

## WESTMINSTER SCHOOL THE CHALLENGE 2014

# **CHEMISTRY**

Thursday 1 May 2014

Time allowed: 30 minutes

Please write in black or blue ink.

Write your answers in the spaces provided.

OFUS

For examiner use only

Total Mark



### C1 This question is about chemical changes

Complete the following word equations by filling in the gaps:

(a) zinc + copper oxide  $\rightarrow$  \_\_\_\_\_ + \_\_\_\_

(b) oxygen + hydrogen  $\rightarrow$  \_\_\_\_\_

(c) sodium hydroxide +  $\_\_\_$   $\rightarrow$  sodium chloride + water

(d) methane + oxygen  $\rightarrow$  \_\_\_\_\_ + \_\_\_\_

[Total: 6]

#### C2 This question is about measuring the composition of the air

A Westminster student wants to determine the composition of air. She sets up the following apparatus and records the volume of gas in the upturned measuring cylinder at 9 am every day for 10 days. No air leaks in or out of the measuring cylinder.



| Day | Volume of         |
|-----|-------------------|
|     | gas               |
|     | / cm <sup>3</sup> |
| 1   | 97.5              |
| 2   | 94.3              |
| 3   | 91.7              |
| 4   | 89.6              |
| 5   | 87.9              |
| 6   | 86.4              |
| 7   | 85.3              |
| 8   | 84.3              |
| 9   | 83.5              |
| 10  | 82.9              |

| (a) | Explain why the water level rises as the experiment proceeds.                                            |     |  |  |  |  |  |  |
|-----|----------------------------------------------------------------------------------------------------------|-----|--|--|--|--|--|--|
|     |                                                                                                          |     |  |  |  |  |  |  |
|     |                                                                                                          | (1) |  |  |  |  |  |  |
| (b) | Using the graph paper on the opposite page plot these results. You should choose a suitable axis.        | (2) |  |  |  |  |  |  |
| (c) | The student says her experiment is not complete after 10 days. How does the data support this statement? | (2) |  |  |  |  |  |  |
|     |                                                                                                          |     |  |  |  |  |  |  |

### Volume of air vs time



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

|     | Final Volumecm <sup>3</sup>                                                                |      |
|-----|--------------------------------------------------------------------------------------------|------|
|     |                                                                                            |      |
|     |                                                                                            |      |
|     |                                                                                            |      |
|     |                                                                                            |      |
|     |                                                                                            |      |
|     |                                                                                            |      |
|     | Percentage of oxygen in air%                                                               | (3)  |
|     |                                                                                            | (0)  |
| (e) | The accepted percentage of oxygen in the air is 21%. Compare this value to your answer     | r    |
|     | to part (d) and explain any difference.                                                    |      |
|     |                                                                                            |      |
|     |                                                                                            |      |
|     |                                                                                            | /1 \ |
|     |                                                                                            | (1)  |
| (f) | The student weighed the iron wool both before and after the experiment. Which of the       |      |
|     | following statements about the iron wool is true (circle the correct letter)?              |      |
|     | A The mass has decreased during the experiment                                             |      |
|     | B The mass remains the same                                                                |      |
|     |                                                                                            |      |
|     | C The mass has increased during the experiment                                             | (1)  |
|     |                                                                                            | (1)  |
| (g) | The iron wool starts off a shiny metallic grey colour. What colour is it at the end of the |      |
|     | experiment?                                                                                |      |

| (h) | The student places a glowing splint in the gas remaining at the end of the experiment. |  |  |  |  |  |  |  |
|-----|----------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|     | Predict what happens to the splint.                                                    |  |  |  |  |  |  |  |
|     |                                                                                        |  |  |  |  |  |  |  |
|     |                                                                                        |  |  |  |  |  |  |  |
|     |                                                                                        |  |  |  |  |  |  |  |
|     |                                                                                        |  |  |  |  |  |  |  |
|     |                                                                                        |  |  |  |  |  |  |  |
|     | (1)                                                                                    |  |  |  |  |  |  |  |
|     |                                                                                        |  |  |  |  |  |  |  |
|     | [Total: 11]                                                                            |  |  |  |  |  |  |  |
|     | [10tal. 11]                                                                            |  |  |  |  |  |  |  |

#### C3 This question is about the preparation of an inorganic salt

Another Westminster student wants to prepare a sample of copper sulphate crystals. He finds a copy of the Westminster School Chemistry IGSCE Revision Guide lying around and notices the rules that help predict the solubility of salts:

- all common sodium and potassium salts are soluble
- all nitrates are soluble

(b) Fill in the missing step 2 above.

- common chlorides are soluble, except silver chloride
- · common sulphates are soluble, except those of barium and calcium
- · common carbonates are insoluble, except those of sodium and potassium

The student decides to use the following chemical reaction to prepare his copper sulphate crystals:

copper carbonate + sulphuric acid → copper sulphate + carbon dioxide + water

| The st | eps he follows are:                                                                  |      |
|--------|--------------------------------------------------------------------------------------|------|
| 1.     | Add an excess of copper carbonate to sulphuric acid whilst gently warming and stirri | ng.  |
| 2.     |                                                                                      | •••• |
| 3.     | Heat the remaining solution to evaporate half the water.                             |      |
| 4.     | Leave solution to crystallize.                                                       |      |
| 5.     | Dry crystals.                                                                        |      |
| (a)    | Describe two observations that the student would make in step 1.                     |      |
|        |                                                                                      |      |
|        |                                                                                      | (2)  |

| (c) | Why is the copper carbonate added in excess?                                                                                                      |      |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------|------|
|     |                                                                                                                                                   |      |
|     |                                                                                                                                                   | (1)  |
| (d) | Copper carbonate contains impurities such as copper oxide and copper hydroxide. We will this not lower the yield of crystals the student obtains? | /hy  |
|     |                                                                                                                                                   |      |
|     |                                                                                                                                                   | (1)  |
| (e) | Why could this method not be used to prepare barium sulphate from barium carbona                                                                  | ate? |
|     |                                                                                                                                                   |      |
|     |                                                                                                                                                   | (1)  |
| (f) | Using the information given on the opposite page, describe the procedure you would follow to prepare a dry sample of barium sulphate:             | l    |
|     |                                                                                                                                                   |      |
|     |                                                                                                                                                   |      |
|     |                                                                                                                                                   |      |
|     |                                                                                                                                                   |      |

| $\sim$ 4 |         |          | •  | 1 .    |    |        | •             | 1  | 1     | 1 .   |       |
|----------|---------|----------|----|--------|----|--------|---------------|----|-------|-------|-------|
| C4       | I his o | question | 18 | about: | 10 | entits | 71 <b>n</b> g | นท | known | subst | ances |
|          |         |          |    |        |    |        |               |    |       |       |       |

|      | electricity.                                                                                                   |     |
|------|----------------------------------------------------------------------------------------------------------------|-----|
| i.   | What information can be deduced about the identity of element ${\bf Q}$ from the nature of resulting solution? | the |
|      |                                                                                                                | (1) |
| ii.  | Describe an experiment you could perform to show that the solution is acidic.                                  |     |
|      |                                                                                                                |     |
|      |                                                                                                                |     |
|      |                                                                                                                | (2) |
| iii. | Suggest the identity of element <b>Q</b> .                                                                     |     |
|      |                                                                                                                | (1) |

(a) A sample of an unknown element  $\boldsymbol{Q}$  is burnt in air. The product is collected and

dissolved in water to give an acidic solution. A solid sample of  ${\bf Q}$  is found to conduct

|      | sample of compound $\mathbf{X}$ is added directly to hydrochloric acid, vigorous effervescen observed. | ce is   |
|------|--------------------------------------------------------------------------------------------------------|---------|
| i.   | Suggest the identity of compound <b>X</b> .                                                            |         |
|      |                                                                                                        | . (1)   |
| ii.  | What has happened to the missing 4.4 g?                                                                |         |
|      |                                                                                                        |         |
|      |                                                                                                        | . (1)   |
| iii. | What is the name given to the type of reaction when compound $\mathbf{X}$ is heated?                   |         |
|      |                                                                                                        | . (1)   |
|      | [To                                                                                                    | tal: 7] |
|      | [Total marks for this sectio                                                                           | n: 33]  |

**END OF CHEMISTRY SECTION** 

(b) When 10 g of compound **X**, a white powder, is heated for 6 hours at 1000°C, the mass of white powder remaining at the end is 5.6 g. When this is added to hydrochloric acid it dissolves to give a clear, colourless solution, with no other observations. When another