

Year 9 Entrance and Scholarship Examination Mathematics

Specimen Paper B

TIME allowed for this paper: 90 minutes

Instructions

- Use a calculator where appropriate.
- Answer all the questions.
- Show all your working.
- Marks for questions are shown in square brackets [].
- There are 125 marks in total
- You must not write in the squares at the bottom right of each page

1.	OSC ,	your calculator to work out the value of: $\sqrt{\frac{3+\sqrt{2}}{4}}$	
	(a)	Write down all of the digits shown on your calculator:	
		Answer:	[1]
	(b)	Write your answer to (a) rounded to 1 decimal place:	
		Answer:	[1]
	(c)	Write your answer to (a) rounded to 4 significant figures:	
		Answer:	[1]
	(b)	Answer:A teacher has purchased some calculators from a shop for £12 decides to sell these calculators to those forgetful students. calculator sold the teacher decides to make a 25% profit. Calculator each student pays for a calculator.	2 each and For each
	(b)	A teacher has purchased some calculators from a shop for £12 decides to sell these calculators to those forgetful students. calculator sold the teacher decides to make a 25% profit. Calculator	2 each and For each culate how [2] camination.

3.	Simplify the	following
٥.	ompiny me	10110 111115

(a)
$$3ab - 4a + 6b - ab - 3a - 10b$$

Answer: _____ [2]

(b) 4(3x-2)

Answer: _____ [2]

(c) 3-(4x-2)-6x

Answer: _____[2]

(d) (x-2)(x+7)

Answer: _____ [3]

 $(e) \qquad \frac{56ab^3}{8a^3b^2}$

Answer: _____ [2]

4. The diagram below shows two parallel lines and a triangle with two equal sides as indicated. Calculate the values of x and y.

Answer:	x =		y =		[3]	I
---------	-----	--	-----	--	-----	---

5. The current world record for the men's 100 metre sprint is 9.58 seconds.

Writing your answers to 3 significant figures, calculate the average speed of the world record holder in:

(a) metres per second,

Answer: _____ m/s [2]

(b) kilometres per hour,

Answer: _____ km/h [3]

(c) miles per hour (note that one kilometre is roughly 0.621 miles).

Answer: _____ miles/h [2]

6.	(a)	State	e the largest number less than 25 which is:	
		(i)	a prime number,	
			Answer:	[1]
		(ii)	a square number,	
			Answer:	[1]
		(iii)	a triangular number.	
			Answer:	[1]
	(b)	For th	he sequence of numbers:	
			3, 7, 11, 15,	
		calcul	ılate:	
		(i)	the 6 th term in the sequence,	
		(ii)	Answer: Answer:	[1]
		(iii)	Answer: the term of the sequence which has a value of 3999.	[2]
			Answer:	[2]

7.

In the diagram shown above you are told that the angle marked y is twice as big as the angle marked x and the angle marked z is three times as big as that marked x.

Calculate the size of the angles marked x, y and z.

Answer: $x =$, y =	, z =	[4]

8.

Given that the above grid is made of squares with sides of 1 cm, calculate the area of:

(a) triangle A,

Answer: _____ cm² [2]

(b) triangle B.

Answer: _____ cm² [2]

9. The diagram below shows two right angled triangles. Calculate x and y.

Answer: $x =$	cm, y =	cm [4]

10.

2, 2, 2, 3, 4, 5

For the data above calculate:

(a) the median,

Answer: _____[1]

(b) the mean.

Answer: _____[2]

Two more values, x and y, are added to the data list. The range of the new data list is 6 and its new mean is 3.75.

(c) Calculate the values of x and y.

$$x =$$
________[3]

11. (a) Complete the tables of values for the following straight lines:

(i)
$$y = 2x - 2$$

x	-2	0	4
у			6

(ii)
$$y = 1 - x$$

x	-2	0	4
у			-3

[2]

(b) Plot the lines y = 2x - 2 and y = 1 - x on the grid below.

(c) Write down the coordinates of where the two lines cross.

	1	-
Answer:	(,) [2]

[2]

12.	Solve the following equations:
-----	--------------------------------

(a)
$$3x - 5 = 4 - 2x$$

(b)
$$\frac{x}{3} - 1 = 7$$
 [2]

(c)
$$(2x-1)(3x+2) = 6x^2 - x + 2$$
 [2]

$$x =$$
 [3]

- 13. Factorise fully:
 - (a) $40x^2 + 10$

Answer: ______[2]

(b) $35abc - 45a^2c^3$

Answer: [2]

14.

On the grid above draw the result of:

(a) translating shape T by the vector $\begin{pmatrix} -3 \\ -4 \end{pmatrix}$ labelling your answer A,

[2]

(b) rotating shape T 90° clockwise about (0,0) labelling your answer B,

[2]

(c) reflecting shape T in the line y = x labelling your answer C,

[2]

(d) enlarging shape T by a scale factor of 3 with centre of enlargement (3, 3) labelling your answer D.

[2]

		Answer: [2]
	(b)	Calculate how many sides a regular polygon has if its interior angle is equal to the exterior angle of an equilateral triangle.
		Answer: [3]
6. Т	The fa	aces of a cube are painted so that any two faces which have an edge in
c		non are painted different colours. Find the smallest number of colours d to paint the cube.
c		non are painted different colours. Find the smallest number of colours
c		non are painted different colours. Find the smallest number of colours
c		non are painted different colours. Find the smallest number of colours
c		non are painted different colours. Find the smallest number of colours
c		non are painted different colours. Find the smallest number of colours
c		non are painted different colours. Find the smallest number of colours
c		non are painted different colours. Find the smallest number of colours
c		non are painted different colours. Find the smallest number of colours
c		non are painted different colours. Find the smallest number of col-

red b	ag contains n balls which are red, green or blue. The probability of picking a ball at random from the bag is $\frac{1}{6}$ and of picking a green ball is $\frac{3}{10}$. Calculate mallest possible value of n .
	Answer: [2]
A pa	clindromic number is one which reads the same forwards as backwards.
For e	example, 1551 is palindromic, as is 12321.
(a)	Find the next palindromic number after 1551.
	Answer: [1]
(b)	Find the next palindromic number after 12321.
	Answer:[1]
(c)	Calculate the sum of all of the palindromic numbers between 100 and 200.
	Answer:[2]
	A particle of the state of the

Page total:

19. A cylindrical paint tin has a radius of 16 cm and a height of 30 cm.

(a)	Calculate t	he o	circumference	of the	base,	giving	your	answer to	1	decimal
1	place.									

(b) Calculate the volume of the cylinder, giving your answer to the nearest whole number.

(c) Calculate the number of litres of paint that this tin contains, giving your answer to 1 decimal place.

(d) Each litre of paint covers 10 m². Calculate the area of wall this can of paint covers, giving your answer in m² and to the nearest whole number.

Answer: _____ m² [2]

20. Calculate the sum of the angles shown in each of the diagrams:

(a)

Answer: _____[2]

(b)

Answer: _____ [2]

21. A new way to combine two numbers, written Δ , is defined as:

$$x \Delta y = x^2 + y^2$$

For example, $3 \Delta 5 = 34$ because $3^2 + 5^2 = 9 + 25 = 34$.

- (a) Calculate:
 - (i) $2\Delta 3$,
 - (ii) $(-2) \Delta (-3)$,

Answer: _____ [2]

Answer: _____ [2]

(iii) $3 \Delta (4 \Delta 2)$.

Answer: _____ [2]

- (b) Solve:
 - (i) $3 \Delta x = 10$,

x = _____[2]

(ii) $x \Delta x = 242$.

x =____[2]

22.	The 5 digit number $1a78c$ is digits a, b	ivided by and c .	7 and	gives	the 4	digit	result	25 <i>b</i> 1.
		a =	l	b =		_ c = _		[3]

Work out the dimension of a rectangle with an area of 242 cm² if its length and breadth are both whole numbers of centimetres, one of which is an even number and the other a prime number.

Answer: _____ cm by ____ cm [3]

24. The diagram below shows a rectangle containing three circles each with radius 2.5 cm. The rectangle has a width of 13 cm and a height of x cm.

Calculate the value of *x*.

x =	cm	[3]	
		٠.	

THE END IF YOU HAVE TIME THEN GO BACK AND CHECK YOUR ANSWERS

Page total: